HEAT EXCHANGERS

RANGE OF APPLICATIONS

The Transparent Specialist

Permissible temperature range for both shell & tube sides $-40^\circ C$ to $150^\circ C$ Maximum permissible temperature difference between shell & tube sides $120^\circ C$ All sizes & models are suitable for full vacuum on both side. Maximum limiting pressures are tabulated herebelow :

		Maximum Permissible Pressure Range, Kg/cm ² (g)		
Model	Side	150 DN	225 DN	300 DN
RGG	Shell	2.0	1.0	1.0
	Tube	2.0	1.0	1.0
RGM	Shell	2.0	1.0	1.0
	TUbe	3.5	3.5	3.5
RMG	Shell	3.5	3.5	3.5
	Tube	2.0	1.0	1.0

The above ranges of application are admissible limiting values. For each specific case GOEL recommends the admissible operating data based on the relations between pressure and temperature, size and model.

PERFORMANCE & DESIGN DATA

The particular advantage of shell & tube heat exchanger is high heat transfer performance. The relation between heat transfer and velocity of flow can be easily seen in the diagram. On receipt of the operating data from client the most favourable shell and tube heat exchanger is selected. This accurate design combined with most reliable quality assurance ensure economy and operational reliability for the user. For approximate sizing some typical heat transfer coefficients are given here below :

		U-Values	
Media	use	kcal/m²hr k	W/m²k300
DN			
Steam water	Condensation	350-550	410-640
Water-Water	Cooling	250-350	290-410
Water-air	Cooling	30-60	35-70

